How to Develop Very Large Data Sets using Excel

Updated on August 7, 2020
klanguedoc profile image

Kevin is data science and data engineer. He works for a large consulting company in Montreal, Canada. He has over 20 years experience.

Explore the techniques to handle very large datasets in Excel from Azure. Use any of Microsoft Azure storage options like HDInsight (Hive), CosmoDB, Azure Storage or MongoDB in Azure with Azure Analysis Services from Excel and Power Query.


Let’s face it, at some point your data-sets will outgrow Excel’s million row capacity, even Power Query (Power Pivot or Get and Transform) 100 million row capacity. Even your computer has a limited amount of storage space and processing space.

Even working with a 100 million rows with Power Query will have a drag on your local resources or at least depending on the available resources on your local computer.

Microsoft offers several storage options for very large data-sets, like Big Data, that can work with Excel. You only need Azure Analysis Service (which is like the SQL Server Analysis Services). Mind you, if your SQL Server database is installed on premise or in a cloud virtual machine or private virtual cloud, you can also use SQL Server Service Analysis Services to handle very large data sets as well.


Data Storage

You will need Excel 2007 or later with Power Pivot (2007/2013) or Get & Transform (2016 and later). Both technologies are the same except for branding. Also, in 2007/2013 time-frame, Power Pivot was a standalone add-in, while with Excel 2016 (O365: certain versions) or on-premise Excel 2016, the Get & Transform is integrated.

You will also need a storage option in Azure. There are several options to choose from:

Azure Databricks (which is the commercial version of Apache Spark and includes Apache Hive, MLlib and Apache Arrow)

Azure HDInsight (which is Microsoft’s version of Hadoop, based on Hortonworks Hadoop)

Azure Storage is massive file system which can handle very large flat files for example or blobs which are massive object data stores

Azure CosmosDB is a NoSQL Distributed Database

You can use Azure SQL Server (on-premise, in private cloud, in Azure VM, or Azure SQL Services) which are all SQL Server technology but hosted differently.

Azure MongoDB, this is MongoDB, a NoSQL massive data store that is naively hosted through Azure and that can be distributed globally and handle massive amounts of data.

All these data solutions can be easily setup through the Azure portal at:


In order to handle the massive data stored in these data storage solutions which are designed to scale massively and globally, you will need a middleware interface to bridge the communication between these massive data stores and Excel. Of course, you can’t download and try manipulating this data locally. You need to interface with the data remotely. Yes, this can be done using Azure Analysis Services or directly through a metadata connection directly to the source. The metadata connection allows you to manipulate the data in Excel, but the data is in the back-end data servers.

Azure Analysis Services is the equivalent of SQL Server Analysis Services. The former is for the databases in Azure and the latter is for SQL Server data warehouses on premise, on a Azure hosted VM or even a VM on AWS for instance.

Azure Analysis Services allows you to create a Tabular data model which is exactly the same as Power Pivot in Excel and Power BI. Once you connect to AAS (Azure Analysis Services), you will create a connection and metadata in Excel

To create a data model, you will need to install Visual Studio 2019 (Fig 4) (there is a free community edition). During installation, select Data storage and processing and in particular, the SQL Server Data Tools.

Fig 4
Fig 4

Once installed, launch Visual Studio and create an Analysis Services project from the list of project templates.

Fig 5
Fig 5

Once you must project created, you will need to connect to your data source and select the table and/or views you will need to build your model.

Fig 6
Fig 6
Fig 7
Fig 7
Fig 8
Fig 8


In Excel, you have several options to connect either directly to the source and build your model in Excel, like with Power Pivot, or you can connect to Analysis Services as I mentioned before. Either way, select the data source by clicking on “Get Data” in the “Get and Transform Data” group under the Data tab.

Fig 9
Fig 9

From the Get Data menu option, select “From Azure” and select one of the connection options from the list depending on the type of Big Data storage option you chose for the back-end storage in your architecture.

Fig 10
Fig 10

To use the Azure Analysis Services, select this option from the “Get Data” menu and select “From Database” menu select the “From Analysis Services” option. These options create a connection and transfers the metadata to Excel, but the data remains on the server.

These are very powerful data analysis and data engineering/science options.

Fig 12
Fig 12


Wrangling Big Data or very large data-sets in Excel is very possible using Azure's various massive storage options. With Excel you can opt to use Azure Analysis Services to design and build your data model and connect it with Excel or you can create a direct connection with these massive data storage like Hive, Spark, MongoDB, CosmosDB, SQL Server to name a few that are available with a subscription to Microsoft Azure public cloud.

This article is accurate and true to the best of the author’s knowledge. Content is for informational or entertainment purposes only and does not substitute for personal counsel or professional advice in business, financial, legal, or technical matters.

© 2020 Kevin Languedoc


    0 of 8192 characters used
    Post Comment
    • klanguedoc profile imageAUTHOR

      Kevin Languedoc 

      4 months ago from Canada


    • bhattuc profile image

      Umesh Chandra Bhatt 

      4 months ago from Kharghar, Navi Mumbai, India

      Excellent article. Useful for people handling large data sets.


    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at:

    Show Details
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the or domains, for performance and efficiency reasons. (Privacy Policy)
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)
    ClickscoThis is a data management platform studying reader behavior (Privacy Policy)