An Introduction to Software Defined Antennas

Updated on January 8, 2018
tamarawilhite profile image

Tamara Wilhite is a technical writer, industrial engineer, mother of 2, and a published sci-fi and horror author.

Introduction

Software defined radios or SDR monitor many frequencies for a signal. The same techniques can be used to create a software defined antenna or SDA that can generate a wide array of signals. How do you create a software defined antenna? How are software defined antennas used with software defined radios?

Examples of Ultra Wide Band antennas used with SDRs
Examples of Ultra Wide Band antennas used with SDRs | Source

Creating Software Defined Antennas

You can electrically create phase shifts in a circuit to create an SDR/SDA. We’ll ignore these for the sake of simplicity.

You can use a phase shifter such as those used in phased array radar. It uses switching in different transmission lines to vary the electrical length of a line. You can even combine phase shifters with several antennas to steer the beam.

To steer the beam, you start with multiple phasing lines or phase shifters, all of the same length. The top lines are set to have a longer length while the bottom lines are set to a shorter length of coax. This setting causes the beam to shift up. If you set the bottom lines as longer length of coax and the top lines as short lengths of coax, the beam will shift down. (Unless you live at a high elevation, this is counter-productive.). If the network has more antennas, the signal has greater gain and you get finer control. There are sixteen way power dividers for software defined antennas in public use today, combined with ultrawide band antenna (UWB) arrays.

The UWB antennas allow the software defined radio to receive a wide range of frequencies using just one antenna / element per reception site. When there are many antennas, you could steer the beam by turning on and off individual elements. The more common layout, though, is the four square antenna configuration.

The main difference in the software defined antenna arrangement is the software defined radios placed at each of the receiving UWB antennas connected via a data cable to a central computer, instead of relaying the signal through a power divider to an amateur radio rig.

The antennas are usually located one quarter of a wavelength apart. If you’re picking up 10 meter signals, the antennas need to be at least 2.5 meters apart. Any closer, and they can’t receive the signal. Farther apart, and they won’t receive it as well though half and full wavelength distances between the antennas are acceptable. The benefit of the four square antenna layout is that you can switch the beam between any four directions with 360° coverage with a minimum of antennas. This configuration also nullifies a lot of signal noise.

The layout shown with software defined radios connected to each antenna allows them to digitally process the signals and peak them, and the differences in reception time between each antenna allow the radios to determine the signal’s exact direction. You can also determine the received beam’s pattern, which would be visible on a waterfall display. The only limitation is the SDR resolution and processing capability.

In the figure here, we see the comparison of a standard four square coax layout with signal generation and reception controlled by a power divider. (Thank you, Kent Britain, WA5VJB, for creating the diagram and giving me permission to use it.)

Image created by Kent Britain, used with his permission
Image created by Kent Britain, used with his permission | Source

Practical Applications for SDR and Software Defined Antennas

Software defined radios or SDR are in use by the military and a growing number of commercial applications. They are starting to be used in amateur radio.

A practical application of software defined antennas and SDRs is in cell sites. A multi-function cell site can use the same technology to provide a directional beam to each user. This reduces the occurrence of dropped calls and dead areas.

Questions & Answers

    Comments

    Submit a Comment

    • profile image

      EA1DDO 

      5 months ago

      Interesting, but... to be coherent every SDR needs to be sharing same oscillator. How can you do that?

    working

    This website uses cookies

    As a user in the EEA, your approval is needed on a few things. To provide a better website experience, turbofuture.com uses cookies (and other similar technologies) and may collect, process, and share personal data. Please choose which areas of our service you consent to our doing so.

    For more information on managing or withdrawing consents and how we handle data, visit our Privacy Policy at: https://turbofuture.com/privacy-policy#gdpr

    Show Details
    Necessary
    HubPages Device IDThis is used to identify particular browsers or devices when the access the service, and is used for security reasons.
    LoginThis is necessary to sign in to the HubPages Service.
    Google RecaptchaThis is used to prevent bots and spam. (Privacy Policy)
    AkismetThis is used to detect comment spam. (Privacy Policy)
    HubPages Google AnalyticsThis is used to provide data on traffic to our website, all personally identifyable data is anonymized. (Privacy Policy)
    HubPages Traffic PixelThis is used to collect data on traffic to articles and other pages on our site. Unless you are signed in to a HubPages account, all personally identifiable information is anonymized.
    Amazon Web ServicesThis is a cloud services platform that we used to host our service. (Privacy Policy)
    CloudflareThis is a cloud CDN service that we use to efficiently deliver files required for our service to operate such as javascript, cascading style sheets, images, and videos. (Privacy Policy)
    Google Hosted LibrariesJavascript software libraries such as jQuery are loaded at endpoints on the googleapis.com or gstatic.com domains, for performance and efficiency reasons. (Privacy Policy)
    Features
    Google Custom SearchThis is feature allows you to search the site. (Privacy Policy)
    Google MapsSome articles have Google Maps embedded in them. (Privacy Policy)
    Google ChartsThis is used to display charts and graphs on articles and the author center. (Privacy Policy)
    Google AdSense Host APIThis service allows you to sign up for or associate a Google AdSense account with HubPages, so that you can earn money from ads on your articles. No data is shared unless you engage with this feature. (Privacy Policy)
    Google YouTubeSome articles have YouTube videos embedded in them. (Privacy Policy)
    VimeoSome articles have Vimeo videos embedded in them. (Privacy Policy)
    PaypalThis is used for a registered author who enrolls in the HubPages Earnings program and requests to be paid via PayPal. No data is shared with Paypal unless you engage with this feature. (Privacy Policy)
    Facebook LoginYou can use this to streamline signing up for, or signing in to your Hubpages account. No data is shared with Facebook unless you engage with this feature. (Privacy Policy)
    MavenThis supports the Maven widget and search functionality. (Privacy Policy)
    Marketing
    Google AdSenseThis is an ad network. (Privacy Policy)
    Google DoubleClickGoogle provides ad serving technology and runs an ad network. (Privacy Policy)
    Index ExchangeThis is an ad network. (Privacy Policy)
    SovrnThis is an ad network. (Privacy Policy)
    Facebook AdsThis is an ad network. (Privacy Policy)
    Amazon Unified Ad MarketplaceThis is an ad network. (Privacy Policy)
    AppNexusThis is an ad network. (Privacy Policy)
    OpenxThis is an ad network. (Privacy Policy)
    Rubicon ProjectThis is an ad network. (Privacy Policy)
    TripleLiftThis is an ad network. (Privacy Policy)
    Say MediaWe partner with Say Media to deliver ad campaigns on our sites. (Privacy Policy)
    Remarketing PixelsWe may use remarketing pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to advertise the HubPages Service to people that have visited our sites.
    Conversion Tracking PixelsWe may use conversion tracking pixels from advertising networks such as Google AdWords, Bing Ads, and Facebook in order to identify when an advertisement has successfully resulted in the desired action, such as signing up for the HubPages Service or publishing an article on the HubPages Service.
    Statistics
    Author Google AnalyticsThis is used to provide traffic data and reports to the authors of articles on the HubPages Service. (Privacy Policy)
    ComscoreComScore is a media measurement and analytics company providing marketing data and analytics to enterprises, media and advertising agencies, and publishers. Non-consent will result in ComScore only processing obfuscated personal data. (Privacy Policy)
    Amazon Tracking PixelSome articles display amazon products as part of the Amazon Affiliate program, this pixel provides traffic statistics for those products (Privacy Policy)