Skip to main content

Nanogenerators and Charging Electronic Devices by Movement

Linda Crampton taught science and information technology to high school students for many years. She enjoys learning about new technology.

It would be a shame to be unable to photograph a beautiful scene because a device has no power. Nanogenerators driven by human motion may solve this problem.

It would be a shame to be unable to photograph a beautiful scene because a device has no power. Nanogenerators driven by human motion may solve this problem.

The Promise of Nanogenerators

Cell phones and other personal electronic devices play important roles in many people’s lives. These devices require a power supply, which sometimes runs out at very inconvenient times. Researchers at the Georgia Institute of Technology in Atlanta and at other institutions may have the answer to this power dilemma. They’ve created tiny nanogenerators that produce electricity under the influence of human muscle action and can be driven by walking.

The nanogenerators that are being explored create one of two types of electricity—piezoelectricity or triboelectricity. Piezoelectricity is produced by deforming an object. Triboelectricity is produced by rubbing two objects together and seems to be the most promising method for powering devices. Both types of nanogenerator can be driven by other types of mechanical motion in addition to walking.

Although the generators are currently in the experimental stage, researchers predict that they will soon be powerful and convenient enough to charge our personal electronic devices and to perform many other useful and important functions.

We may soon be able to charge our personal electronic devices by muscle movements.

We may soon be able to charge our personal electronic devices by muscle movements.

What Are Nanogenerators?

The prefix “nano” means one billionth of the base measurement unit that is being used. For example, a nanometer or nm is a billionth of a meter. In the case of a nanogenerator, nano refers to nanotechnology, which is technology that involves extremely small objects. The definition of what "extremely small" means varies. For some people, it means objects between 1 and 100 nm in diameter. For others, it includes objects the size of atoms and molecules, which are often below 1 nm in diameter

A nanogenerator is a small but visible device that converts mechanical energy to electricity and contains materials that are active on the nanoscale. The goal is to make nanogenerators as small, lightweight, and powerful as possible so that they are both wearable and useful.

Muscles consist of fibers that contract in order to move structures.

Muscles consist of fibers that contract in order to move structures.

Muscle Contraction and Electricity

Electronic equipment is useless when it has no power. At the moment, obtaining power away from an electrical outlet is often problematic. A replacement battery, a portable charger, or a solar-powered charger can be taken on trips. These are extra items to carry and may be heavy or awkward to pack. A convenient power source that is always available is muscle energy.

Muscle contraction and relaxation is constantly taking place in our bodies. The heart repeatedly beats and relaxes to pump blood around the body. The respiratory muscles contract and relax to allow the lungs to fill with air and then partially empty. More muscle contraction occurs as we move parts of our body through space. Muscle activity is occurring wherever we go and all the time, even in people with mobility problems. It’s a property of human life. Scientists at Georgia Tech have discovered that this activity can be used to produce electricity.

The Nature of Piezoelectricity

Crystals and other materials are made of atoms. Atoms contain smaller particles—protons, which have a positive charge, electrons, which are negative, and neutrons, which have no charge. The protons and neutrons are located in the nucleus of an atom. The electrons travel around the nucleus in different orbits and at different distances from the nucleus. The nucleus and inner electrons aren’t involved in piezoelectricity or triboelectricity, but the outer electrons are. Under the right conditions, outer electrons from some substances move out of their atom and into another one.

An atom normally has the same number of protons and electrons and is therefore neutral. When a piezoelectric crystal is pressed and distorted, outer electrons move away from their atoms, leaving these atoms with an unbalanced positive charge. One side of the crystal becomes negative due to the collection of extra electrons, and the other side becomes positive due to the loss of electrons. The separation of charges produces a potential difference or voltage.

Voltage can be thought of as a type of force. When charges are separated, electrons "try" to get back to their starting point. The electrons release energy as they do this, which we can use. A flow of electrons (or other charged particles) is known as an electrical current.

Gas burners, stoves, and grills use the piezoelectric effect to produce a flame. When an igniter is pressed, a small hammer hits a piezoelectric material, such as quartz. The quartz changes shape and produces an electric spark, which ignites the gas.

Nanogenerators and Piezoelectricity

Professor Zhong Lin Wang and his colleagues at the Georgia Institute of Technology in the United States have created a nanogenerator based on piezoelectricity. The nanogenerator contains tiny zinc oxide wires that create electricity when they are bent. Five hundred zinc oxide nanowires placed side by side have the width of one human hair. The nanowires are placed on a flexible polymer film. The polymer layers are then arranged in a sandwich-like structure to create a nanogenerator. The generator creates electricity when a person bends it with his or her fingers.

One zinc oxide wire can create only a very small amount of electricity, but there are millions of the wires in a nanogenerator. In April 2011, the generator had reached a voltage of 3 volts—the same voltage as two AA batteries—and was able to light up the liquid crystal display of a calculator or drive a light-emitting diode, as shown in the video below. The researchers then modified their approach.

By 2014, the researchers had created a hybrid piezoelectric/triboelectric generator with a peak output of around 370 volts. Piezoelectric nanogenerators may be useful when low voltages are sufficient, but triboelectric generators seem to offer the most potential.

The Triboelectric Effect

The Georgia Tech team is currently focusing on the creation of nanogenerators that produce electricity based on the triboelectric effect. In this effect, two surfaces are rubbed together and then separated. The rubbing process creates friction and causes the transfer of electrons from one surface to the other. The surface that receives the electrons becomes negative while the surface that loses the electrons becomes positive.

The triboelectric effects results in static electricity, or electricity that doesn't travel through an external circuit. The popular act of rubbing a balloon against someone's hair and then finding that the balloon sticks to a wall is an example of the triboelectric effect.

In static electricity, the charge eventually dissipates by flowing to a nearby area or by a visible electrical discharge, and its energy is wasted. In the case of triboelectric generators, however, the charge (in the form of electrons) is captured and transported through a circuit. The electrons have energy and can do work.

The researchers decided to create triboelectric generators when they noticed that a piezoelectric one was producing an unexpectedly high power output. They discovered that the generator had been assembled incorrectly and that two surfaces were rubbing together, generating the additional power.

Summary and Comparison

Piezoelectricity is created by mechanical stress within a single substance, such as that created when the substance is bent. In triboelectricity, the surfaces of two substances are rubbed together, creating friction. Electrons are displaced over short distances in each case. Scientists want to make use of the energy of the displaced electrons in nanogenerators.

An Early Triboelectric Generator

One type of 2014 triboelectric generator was worn as a small backpack. This is unlikely to be the form in which the generators are sold commercially if they come to market, but the device illustrates the general idea of how the generator works.

Plastic Cards

The backpack contained two pairs of plastic cards. One card in each pair was coated with a material that had the ability to donate electrons, while the other was covered with a material that accepted electrons. In addition, one card in a pair contained tiny, nano-sized pores while the other one was covered with tiny nanowires. The irregularities in the card surface increased the friction when the cards contacted each other.

The Backback

The four cards were each shaped like a rhombus (shown below) and were interlocked in an open, box-like structure called a rhombic grid. The rhombic grid was placed in a box containing weighted springs, which became a backpack. When the body movement of walking caused the weights to move and the box to collapse, the surfaces of the cards were brought together. The nanowires on one card were pushed into the holes on the opposite card, creating electric charges as the surfaces rubbed together. When the springs caused the box to return to its original size, the rhombic grid expanded and the charges were separated, creating a voltage.

Electron Flow Through a Portable Electronic Device

An electrode was connected to one of the plastic cards in a pair. Another electrode was connected to the other card. The electrodes were connected to each other via an electrical circuit outside the cards. An electrical load, such as a personal electronic device, was part of this circuit.

When the cards were separated after being rubbed together, a small current of electrons flowed through the circuit from one card in a pair to the other in order to equalize the charge on the cards. The electrons passed through the electrical load (the portable electronic device) as they travelled and gave up some of their energy to the load. The process of charge creation, charge separation, and electron flow through the circuit occurred repeatedly as the person walked.

A rhombus is a quadrilateral (four-sided figure) with all sides of equal length, as the red lines indicate. In the triboelectric generator, the sides are made of plastic coated with a material that can either accept or donate electrons.

A rhombus is a quadrilateral (four-sided figure) with all sides of equal length, as the red lines indicate. In the triboelectric generator, the sides are made of plastic coated with a material that can either accept or donate electrons.

The National Science Foundation article in the References section below includes a photo of the backpack tribogenerator and an illustration of the rhombic grid. By the time the generator is ready to sell to the public, it may look very different from its appearance in the photo.

New Triboelectric Nanogenerators

Triboelectric nanogenerators seem to be attracting a lot of interest. They are often referred to as TENGs. In 2017, TENGs could produce a voltage of several thousand volts. In 2018 and 2019, researchers worked on improving the devices as a whole instead of on just increasing their voltage.

In July, 2020, a multi-institution team of researchers that included Zhong Lin Wang announced a new type of TENG. Their creation had a "calculated output voltage" of over 20 kV (20 thousand volts), which was a new record, and could illuminate more than 800 LEDs. In addition, its action was more sustainable. The researchers said that a problem with previous versions was that their action was "insufficiently sustainable." They say that their new TENG "can provide some practical applications in many fields such as electrostatic manipulation and air pollution treatment."

In late 2021, even better news was announced by Wang and his team of researchers. Their latest TENG can create a DC voltage of 21.5 kV and an AC voltage of 200 V at the same time. In addition, it can illuminate more than 6,000 LEDs.

Potential Uses of Nanogenerators

Some of the innovations listed below may be more likely than others, but they are all possible. TENG technology is very promising.

Medical Uses

In the future, nanogenerators may be attached to the outside of the body or even placed inside it. The heartbeat, the activity of the breathing muscles, or even the flow of blood could trigger electricity production. The electricity could then be used to drive medical instruments. For example, the muscle movement of the heartbeat might be used to stimulate nanogenerators that power an insulin pump for diabetics. In addition, pacemakers might be charged by nanogenerators.

Environmental and Scientific Uses

Nanogenerators could also be used as environment sensors. They may detect movement due to water leaks, vibrations, and explosions. They may also be used to provide power for other environmental sensors. The generators could have important applications in science experiments and analysis and in industry.

Uses in Clothing

In the near future, piezoelectric or triboelectric nanogenerators may be placed in the soles of shoes so that a person’s footsteps will compress the substance and generate electricity. Our future clothing may contain nanogenerators that produce electricity as the clothing moves on our bodies.

Other Possibilities

Any object that moves could be used to produce electricity. For example, nanogenerators may be placed in car tires or in flags that blow in the wind. The energy of ocean waves could also be used to compress crystals, generating electricity.

Researchers at the Georgia Institute of Technology have shown that replacing conventional power supplies with TENG devices for charging the molecules being analyzed can boost the sensitivity of mass spectrometers to unprecedented levels.

— Georgia Institute of Technology News Release via

An Interesting and Potentially Exciting Future

Nanogenerator research is progressing rapidly, and the devices are becoming more powerful—especially the triboelectric versions. Nanogenerators for medical devices, environmental sensors, and industrial use could be very important. They could also be helpful for professionals who need to use electronic equipment in the field far from away an electrical socket.

Small, light, and powerful generators for charging our mobile phones and other personal electronic devices whenever we want could be another benefit of the technology in the near future, The development would probably make a lot of people very happy. A sufficient voltage is necessary to charge the devices, but sustainability of the voltage, safety of a device, and convenience of transport and use are also important. I'm looking forward to hearing about future developments in nanogenerator technology.


  • Capturing energy from walking from the National Science Foundation
  • A hybrid piezo/triboelectric generator from the Georgia Institute of Technology and the Nature journal
  • Triboelectric nanogenerators boost mass spectrometry performance from the news service
  • University of Surrey TENG research from the Tech Xplore news service
  • A next-generation TENG from
  • New record for TENG voltage from the Environmental Science Journal and the Royal Society of Chemistry (Abstract)
  • High voltage output triboelectric nanogenerator (Abstract) from Springer Link
  • Static electricity could power the world from Discover Magazine
  • Nanogenerator news from (This science news site lists articles tagged with the word "nanogenerator", starting with the latest article and then going back in time.)

This content is accurate and true to the best of the author’s knowledge and is not meant to substitute for formal and individualized advice from a qualified professional.

© 2011 Linda Crampton


Linda Crampton (author) from British Columbia, Canada on December 22, 2013:

Merci beaucoup, Mira. I appreciate your kind comment! Nanogenerators are fascinating devices. I'm very excited and hopeful about their potential uses. They could have a big effect on our lives in the near future and may help us in many ways in addition to charging electronic devices.

Bonjour , c est Mira étudiante en maîtrise on December 22, 2013:

Bonjour ,c est Mira étudiante en maîtrise physicochimie des materiaux ,en fait je m intéresse aux nanogenerateurs ,votre article et votre recherche m ont fait vraiment plaisir ,moi aussi je suis entrain de faire un modeste travail sur ces nanogenerateurs ,c est un domaine passionnant attirant et prometteur j espère vous trouver un jours dans des séminaires scientifiques et que vous nous publiez encore plus d article sur ce sujet d actualité.

Je vous dis bravo .

Linda Crampton (author) from British Columbia, Canada on December 01, 2012:

Hi, seanorjohn. I'm following the research with great interest, too! Nanogenerators will certainly have a big effect on our lives when they become commercially available. Thanks for the comment and the votes.

seanorjohn on December 01, 2012:

This is amazing. Nanogenerators would absolutely transform the lives of billions worldwide. Will certainly follow this with interst. Voted up and damned useful. Ok I have to settle for plain old useful.

Linda Crampton (author) from British Columbia, Canada on April 05, 2011:

Thanks, Chatkath. Yes, the development of nanogenerators might have a significant effect on our lives - especially if they are used in medicine as well as in personal electronic devices. It will be interesting to see what happens!

Kathy from California on April 05, 2011:

Wow, this is interesting, can't imagine how things would change! Great Hub Alicia!

Linda Crampton (author) from British Columbia, Canada on April 04, 2011:

I agree - it is cool! I'll be following the research closely to see how it progresses.

Simone Haruko Smith from San Francisco on April 04, 2011:

This is SO COOL. I can't wait to see nanogenerators go widespread! Hopefully it'll be sooner rather than later XD

Linda Crampton (author) from British Columbia, Canada on April 03, 2011:

Thanks for visiting, Fossillady. It's exciting to think about the potential uses of nanogenerators! I'm looking forward to the future.

Kathi Mirto from Fennville on April 03, 2011:

Fascinating subject...I hope they continue to improve the nano generators to put them to good use

Linda Crampton (author) from British Columbia, Canada on April 03, 2011:

Hi, kashmir56. Thank you for commenting. I've known about nanogenerators for a long time, but it was fascinating to learn about the latest developments as I prepared this hub. I hope that the cost will be low too!

Thomas Silvia from Massachusetts on April 03, 2011:

Hi AliciaC, what a very interesting article and sounds very promising, has well hope they are able to work it out so the cost will be low and it will still work .

Linda Crampton (author) from British Columbia, Canada on April 02, 2011:

Sorry, cathylynn99, I have no idea how much nanogenerators will cost. I’m guessing that nanogenerators for personal electronic devices won’t come to market until they are reasonably priced, since they will be probably be aimed at consumers as well as business people, and that like most new devices, their prices will come down over time. I’m also assuming that before they are sold commercially the researchers will find easier and cheaper ways to make the nanogenerators. These are all just guesses on my part, though! I certainly hope nanogenerators are affordable – I’m looking forward to charging my personal electronics as I walk!

cathylynn99 from northeastern US on April 02, 2011:

how expensive do you expect nanogeneratos to be?